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ABSTRACT

Hedging and speculative motives of market makers often require strategies involving positions in

both the futures and spot market. These are basis strategies. The risk involved in the payoff of

these strategies depends on the basis risk and cannot be diversified away. Hence, any security that

contains a higher basis risk should be compensated through a higher yield. Using simulations based

on a risk-averse model, we find that a market maker increases his quoted spread modestly when

basis risk increases. However, if the basis risk becomes very large, the quoted spread increases more

than proportionally. This convexity in spread suggests the following: the market maker increases

his spread as a compensation for the increased hedge difficulty. When the basis volatility becomes

very large however, the quoted spread becomes even larger indicating his unwillingness to trade.

Based on these findings, we study the basis risk for four fixed income securities in Europe. Using

a state space approach applied to trading data, we estimate the basis risk volatility and find that

bonds that are traded at a premium, like Germany and France, have a lower basis volatility. This

gives an additional explanation why some European bonds are traded at a significant premium

even when we take differences in liquidity or credit risk into account.
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1 Introduction

This paper analyzes the impact of basis volatility on the pricing of Eurozone sovereign bonds.

Hedging and speculative motives of market makers often require strategies involving positions in

both the futures and spot-market. These are so-called basis strategies and arise from the market

makers need to hedge incoming order flow. The payoff of these strategies depends on the basis

volatility or basis risk. In this paper we argue that basis risk is a relevant factor in determining

the price of a fixed income security.

This paper can be divided in two parts. The first part of the paper analyzes the impact of order

flow on price formation when hedging is involved. We show that the basis risk (or basis volatility)

is relevant as it determines the final payoff of a traders hedged position. Basis risk is also important

due to costs associated with managing inventory and holding a position.1 These costs are mostly

operational costs, waiting costs or a deviation from an optimal (mean-variance efficient) portfolio.

The more difficult it is to hedge, i.e. the larger the basis volatility, the more difficult it is to manage

these costs and the higher the required compensation for offering immediacy. Using simulations we

find that there exist a convex relation between the quoted spread and basis risk. More specific, a

widening in the quoted spread occurs due to a small increase in the basis risk. The quoted spread

however widens even more when basis risk becomes large. This non-linearity in spread dynamics

suggests the following: a market maker requires a higher compensation for his services when his

exposure to basis risk increases by quoting a larger bid-ask spread. When the basis risk becomes

problematic however, he widens his spread even more and this indicates his reluctance to trade. In

the second part of the paper, we estimate the basis risk for some Eurozone government bonds using

transaction data from the MTS trading system and bund future data from the EUREX. Although

the bund future requires the delivery of German bonds, there exist a relation between the futures

and the cash market even if the cash instruments cannot be delivered because the futures and spot

market are driven by the same interest rates. If we exclude the futures market in our analysis,

there still exist a hedging relationship between sovereign bonds through the repomarket.2 We show

that bonds with a larger basis volatility are traded at a premium. This provides an alternative

explanation for the yield differences in the Eurozone besides credit risk or liquidity premium. As
1See for example Garman (1976), Stoll (1978) , Ho and Stoll (1981) or O’Hara (1995) for a more general overview.
2To see this, consider a market maker buying a Belgian treasury bond. In a back-to-back trade this security

could be sold right away to another customer, earning the bid-ask spread. However, it is most likely that this bond

is not sold immediately, and the market maker must raise funds to finance this position through a repo. Besides

the financing of this trade, the market maker must also hedge its new position by selling a similar security with

the same duration. In this case, the market maker will conduct a reverse repo financed by the cash from the short

sale. Duffie (1996) addresses the issue of special repo rates in a theoretical framework. He finds that anyone who

holds a special security can borrow at low costs and reinvest this in the general collateral repo rate, earning a repo

investment. As a result, securities which are on special (or likely to go on special) will carry a higher price than

otherwise identical issues. Jordan and Jordan (1997) provide empirical evidence supporting this idea and find that

the liquidity premium associated with “on-the-run” issues is likely due to repo specialness.
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far as we know, we are the first to address the differences in yields towards hedging quality using

trading data. This paper does not address the determinants of basis volatility. On an intra-day

basis, the level of liquidity is an important factor of the basis volatility. Consequently, one cannot

disentangle the yield spread into a liquidity component and a basis risk component. Moreover, any

econometric model including both a measure of liquidity and basis risk will face severe forms of

multi-collinearity.

Most papers analyze the determinants of yield differentials from the perspective of country

specific factors, default risk or liquidity. Chakravarty and Sarkar(1999) focuses on the bid-ask

spread in the US bond market. The data is comprised by individual insurance companies from 1

January 1995 until 31 December 1997 with daily trading volume as a proxy for liquidity. They find

that the bid-ask spreads in municipal and corporate bonds are comparable with an average spread

of 22 and 21 cents respectively. The treasury bond spread however is significant lower with an

average spread of 11 cents. This smaller spread in government securities is explained in terms of

a default and liquidity premia. For Eurozone bonds, Bernoth, Hagen and Schuknecht (2003) state

that ”the main analytical problem is whether these interest differentials can be explained by default

risk and or liquidity risk premia.” Differences in credit rating exist among European sovereign

bonds running from a “AAA ” status in Germany, France, Austria and the Netherlands to A+ for

Greek bonds.3 In a small paper by the central bank of Norway, it is shown that (in the pre-Euro

area) the yield differentials are a function of the country specific macroeconomic variables like

government debt, budget deficit, current account and credit rating.4 The importance of credit

spread has been shown by Codogno, Favero and Missale (2003) for the Euro area. They note

that “the risk of default is a small but important component of yield differentials.” and “liquidity

factors play a smaller role.” Many studies also argue that illiquid fixed income securities should

provide a higher yield in order to induce investors to keep these securities in their portfolio. See for

example Amihud and Mendelsohn (1991), Warga (1992) and Strebulaev (2001). In the Eurozone,

the operations conducted by the treasury agents in the primary market for 10-year bonds vary

from EUR 5bn in Finland to 15-25bn in Germany and Italy. Differences also exist in the secondary

market. In terms of activity, trading in the Italian and German securities are among the largest

in the world. Cheung, de Jong and Rindi (2004) provide some information about the trading

activity on the MTS trading system which is the largest interdealer trading platform for European

government bonds. They find that some 85% of all trading activity in the running 10-year bonds

stems from trading in Italian BTP securities.

Interestingly, the liquidity and trading activity story does not fully explain the yield differences

in the Eurozone. To see this, take a look at figure 1. This figure shows the yield spread between

various 10-year benchmark bonds issued in 2003 in the Eurozone. As we can see, the Dutch state
3Based on S&P’s credit rating system.
4Paper was written by Ingunn Lønning: ”Default premia on European Government debt.” Year of publication

unknown.
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loan is traded on average at a lower yield than its French equivalent (average spread is -2.2 bp)

while the Netherlands is less active on the issuance side. The result is even more interesting for

the Italian security, which is the most actively traded security on the secondary market. It is

however trading above its Portuguese ‘equivalent’ (average spread is 7.1bp) and traded at par

with the Greek bond (average spread is -0.4bp). Figure 2 gives us a snapshot from the tradeweb

platform5 of prices quoted by market makers on the European bond market. Let us take a look at

the depicted quote for the same Italian 2013 bond. This security is very liquid due to its supply in

the primary market and its activity in the secondary market but traded at a 13.4bp yield pickup

compared to its German ‘equivalent’. On the other hand, the credit ratings tell a different story.

The Portuguese and Italian securities are equal in credit risk (according to Moody’s and S&P)

while their Greek ‘equivalent’ is at one notch below.6 The Portuguese bonds however are trading

at a yield pickup of some 4bp pickup while Greece is trading almost at par with the Italian 2013

bond. However, the trading activity in the secondary market for these securities is merely a fraction

of the activity found for Italian bonds. Favero, Pagano and von Thadden (2004) focuses solely on

liquidity and default risk on Eurozone government bonds but they agree that these two factors are

not able to explain the differences in yields. The importance of hedging using the bund future is

also recognized:

“(....) bonds traded in the cash market are not considered as a perfect hedge for

position in the bund future.”

The fact that yield differences are not only related to liquidity or credit risk but also to hedging

quality has important implications for policymaking. A strong fiscal convergence and operations

leading to an increase in liquidity are important for convergence of bond yields but any measures

that can limit the basis risk should be taken into consideration as well. This can be achieved

by e.g. cash settlement or allowing non-German bonds for delivery. Although these measures do

not solve additional problems7, it would help in lowering the ‘natural’ advantage incorporated in

German bonds due to their physical delivery. We think that these measures can greatly improve

the efficiency of using futures to hedge Eurozone fixed income securities.

The paper is organized as follows. Section 2 provides an introduction of basis risk and its role in

hedging and speculative strategies. Section 3 outlines the cost-of-carry relation between the bund

future and the spot market securities and gives a description of our dataset. Section 4 introduces

the model including some econometric details and provides a discussion of the estimation results.

Section 5 finally concludes.
5Tradeweb is the largest client to dealer trading platform for European bonds.
6Portuguese and Italian securities have a credit rating of Aa2 (Moody’s) or AA (S&P) while Greece trades one

notch below.
7Like cash constraints during a roll-over period or the existence of additional conversions for the delivery of

non-German securities.
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2 Hedging European Sovereigns

Transactions in futures are usually either outright or against (forward) bond positions in the form

of basis trades. The basis Bi,t represents a combination of the futures contract and a spot market

security. Buying the basis involves the purchase of securities and the simultaneous sell of the

futures contracts as given in equation (1) and the exact opposite holds when we sell the basis.

Bi,t = Pi,t − ciFt (1)

Hull (1997) defines the basis as the difference between the spot price of assets to be hedged and

the futures price of the contract. In the case of bond futures however, the basis is defined on a

hypothetical bond. We therefore need to multiply the bond future with the conversion factor in

order to get the basis. A long line of research has analyzed the concept of the basis risk, mostly in

the context of hedging or speculation. For example Working (1953), Ederington (1979), Figlewski

(1984), Briys, Crouchy and Schlesinger (1993), Castelino (2000), Mahul (2002) and Draper and

Fung (2003). These papers look at the existence of the basis risk, its impact on the hedge quality

and the payoff of basis strategies. Grossman (1988) analyzes the informational role of the basis

and argues that the basis does not only unify the futures and spot- market but also reflects the

different preferences on both markets. We now take a look at the impact of basis risk and the way

this affects the investor’s position.

2.1 The Role of Basis Risk in Hedging and Speculation

Let us consider a short hedger8 with a portfolio consisting of a long position of XB units of an

asset with price Pt and a short position of θcXB futures contracts. The market maker is free

to choose θ > 0. The (T − t) profit of his portfolio equals XB (PT − Pt) − θcXB(FT − Ft) with

variance X2
Bσ

2
B + θ2c2X2

Bσ
2
F + 2θcXBσBF . Without loss of generality, we can normalize XB = 1

and express the expected profit and variance in terms of the basis per unit of his spot market

position. The profit and its variance equals

E
(
πS
)

= (PT − θcFT )− (Pt − θcFt)
= E∆BT + (1− θ) c× E∆FT (2)

σ2
π = σ2

B + [(1− θ) c]2 σ2
F + 2 (1− θ) cσBF (3)

where ∆BT = BT − Bt and ∆FT = FT − Ft. Although we focus on the role of basis risk as

a measure for hedging quality, it is also of importance for investors who are using the basis for

speculative purposes. Working (1953) already questioned the view of hedgers being risk minimizers

and emphasized expected profit maximization. He states
8A short hedger takes long positions in the basis. This requires a short position in futures and a long position in

cash bonds.
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”(The hedger) buys the spot commodity because the spot is relative low to the futures

price, (...), therefore he buys spot and sells the future.”

Also trading the basis occurs in conjunction with other commitments

“ usually in the expectation of a favorable change in the relation between the spot and

futures price.”

Working’s statement is being captured by equation (2) and shows us that the expected profit

in a hedge consist of two components:

1. Change in the expected basis component E∆BT . If a strengthening of the basis occurs

(i.e. BT widens as the bond price increases more than the futures price), the short hedgers

position improves while a weakening results in a worsening of his position.

2. Change in a speculative component (1− θ) c × E∆FT which is a function of his control

variable θ. If futures prices are unbiased, i.e. EtFt+1 = Ft, than the expected hedge profit is

only affected by the expected change in the basis E∆Bt+1.

Hence, a holder of a long position in the cash market will (over) hedge if the basis is expected to

increase and (under) hedge if the basis is expected to fall. Figlewski (1984) argues that basis is the

risk which arises as the connection between the futures market and the underlying is imperfect.

For bond futures, a perfect hedge (Bt = 0) arises if bond i is the (hypothetical) bond specified

in the futures contract. Any other bond being delivered will have Bt > 0 to avoid arbitrage

opportunities.9 Equation (3) tells us that the risk involved in a short hedge is an increasing

function of the basis risk σB which cannot be controlled for by choosing an appropriate θ. By

minimizing (3) with respect to θ we find the minimum variance hedge (MVH):

MVH = min
θ
σ2
π ⇒ θmin = 1 + ρBF

1
c

σB
σF

(4)

Again, the number of contracts that one chooses is a function if the basis risk σB . By substituting

equation (4) into the variance gives us the residual risk:

σ2
π (θmin) = σ2

B

(
1− ρ2

BF

)
(5)

Equation (5) shows that the residual risk depends on the basis risk σ2
B but also on the correlation

between the basis and futures contract ρBF . More important, the residual risk will always exist

unless the basis and the futures contract is perfect correlated. the results show that the basis
9To see this, equation (1) can be interpreted as the cash flow for a strategy with immediate delivery of the cash

bond. The expected cash flow that arises equals ciFt − Pi,t = −Bi,t implying bt ≥ 0 to avoid arbitrage. In here,

the trading of the basis often involves repos as both the long and short need funds to pay (obtain) for the purchase

(delivery) of the securities.
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risk influences the hedge quality and the payoff of a speculative strategy. Any investor, who is

conducting a basis strategy, should take the basis risk into account.

Our next focus is the analysis of a dealer’s quoted spread when he faces basis risk. One can argue

that a market maker can control the basis risk by moving the quoted spot price in line with the

futures contract. However, the dealer is limited for a number of reasons: First, according to Chan

(1992), movements in the futures price are a source market wide information while movements in

the spot instruments are a source of individual news. Hence, the dealer must take individual news

into account. In addition, a change in the dealer’s quoting strategy will induce orders that are not

of the dealer’s preference as it will result in a change of the trader’s (optimal) position of wealth

and inventory. Also, the urgence to hedge depends also on the market makers ability to match

(unwanted) incoming buy or sell orders with incoming sell or buy orders. The volatility of order

flow is therefore also of importance.

2.2 Basis Risk and Quoted Spread

In this section, we consider the impact of the basis on the quoted spread. In order to analyze this,

we propose a two-period model involving a risk averse market maker. The following assumptions

are made:

• The trading period is given Θ1 = [t0, τ) where at time t0 the market makers decides his bid-

price E (PT )− b and his ask-price by and E (PT ) + a. No trades arrive in period Θ2 = [τ , T ].

The second period can be interpreted as the after market hedging period in which the market

maker can decide to hedge the position acquired in period [t0, τ).

• We have one single market maker who is free to quote his bid-ask spread and no entrance

by another market maker is possible in the period considered. Hence, there is no strategic

interaction or interdealer trading possible.

• The market maker is only quoting one security and any hedging must go through the futures

contract rather than an offsetting position in another security through the repomarket. At

any time t ∈ [t0, T ], this portfolio consist of a trading account (Y ), a position in the security

(X) and a position in the hedge instrument (Z).

• The price of this hedging instrument is exogenous, i.e. cannot be influenced by the market

maker himself. This means that the futures market is infinitely large and elastic compared

to the spot market. We assume that market making is his only stream of income.

• Denote Pt as the price of the security with a conversion factor c relative to a futures contract

with price Ft. The futures price follows a random walk, i.e. Ft = Ft−1 + εt,f where εt,f ∼
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N(0, σ2
f ). Both securities are correlated through

Pt = Bt + cFt (6)

Bt = βBt−1 + εt,b (7)

where εt,b ∼ N(0, σ2
b) and σb denoting the basis risk. The innovations εt,f and εt,b are allowed

to be correlated.

• Let QA and QB be the total number of buy and sell orders that the market maker is receiving

in period Θ1. Both are functions of the bid and ask price set by the market maker.10

QA = ξaa
−1 + εsell (8)

QB = ξbb
−1 + εbuy

where εi(i=buy,sell) ∼ N(0, σ2
i ) distributed.

• Let h describes the hedge ratio of his position and H ≡ h
(
Qb −Qa) is the fraction of his

position which is hedged using a futures contract. The decision to hedge is made at time τ .

• Assume that the market maker is risk averse and maximizes the utility of terminal wealth.

The market maker optimizes

max
S=a+b,h

U = max
S=a+b

E (WT )− 1
2γσ

2
W (9)

subject to EWT ≥ 0 and S ≥ 0 (10)

where γ is his constant relative risk aversion. Equations (10) tells us that a market maker

will stop quoting when he expects to end with a negative wealth.

Step 1: To solve the optimization problem, we work backwards by first solving the problem

of the optimal hedge fraction. Terminal wealth WT can be expressed as a function of the value of

his inventory XT , a hedge position ZT and a trading account YT :

WT = XT + ZT + YT

XT =
(
Xt0 +Qb −Qa)PT

ZT = h
(
Qb −Qa)∆FT

YT =
[
Yt0 +Qa (p+ a)−QB (p− b)] (1 + r)T−τ

The time T value of the dealer’s inventory equals his initial position Xt0 plus the number of

securities bought
(
Qb
)

minus the number of securities sold (Qa). The inventory is evaluated at

price PT . We assume that Xt0 = 0 and the inventory at the end of period Θ2 arises solely from
10From the perspective of the dealer.
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his market making activity in period Θ1. This assumption implies (i) ZT does not contain any

futures position prior to period Θ1 and (ii) ZT is the change in the margin account. The trading

account is given by his initial size Yt0 plus the value Qa sold at the ask-price (p+ a) minus the

value QB bought at the bid-price (p− b). Any borrowing and lending occurs at a rate r and is

constant between period 0 and T . We come to the following proposition:

Proposition 1 The fraction of the inventory being hedged by the dealer equals

H∗ ≡ h∗ (Qb −Qa) = −
[
cov (BT , FT |Ωτ )
var (FT |Ωτ )

+ c

] (
Qb −Qa) (11)

Proof. See appendix point 1

Equation (11) shows that an important role is played by the correlation between the basis and

the futures price. If the basis is independent of the futures price (i.e. cov (BT , FT |Ωτ ) = 0), the

market maker will take a hedge ratio equal to the conversion factor. For example, if Qb > Qa, the

dealer will short sell c
(
Qb −Qa) futures contracts.11 Using the notation of the previous section,

we must have θ = 1, resulting in an expected profit equal to

E
(
πS
)

= ∆BT (12)

On the other hand, if cov (BT , FT |Ωτ ) 6= 0, the market maker will short hedge −H∗ futures

contracts and this implies θ =
cov (BT , FT |Ωτ )
var (FT |Ωτ ) c

+ 1. In this case, the expected profit equals

E
(
πS
)

= E∆BT +
cov (BT , FT |Ωτ )
var (FT |Ωτ )

E∆FT (13)

which creates an additional speculative component in the hedge strategy depending on the change

in the futures price.

Step 2: To see how basis risk influences the quoted price, consider the quoting decision taken

at time t0. Note that at time t0 the terminal wealth can be expressed as a function of the decision

variables (a, b) by substituting H∗ as given in equation (11) into the wealth function. The decision

of choosing (a, b) depends on the information set Ω0 = {F0, P0}. If we denote this function as W ∗T ,

the objective function becomes

max
a,b

E (W ∗T |Ω0)− 1
2γvar(W

∗
T |Ω0) (14)

Where the components of W ∗T = (YT + ZT ) +XT are given by

XT =
(
Qb −Qa)PT

ZT = −c (Qb −Qa)∆FT

YT = Yt0(1 + r)T−t0 +
[
Qaa−QBb] (1 + r)T−τ

11Provided that the numeraire in the futures contract is the same as the spot position. As an illustration, assume

for example that c = 0.95 and the total inventory position is EUR 10mio. If the futures contract is specified per

EUR 100.000, the dealer will short sell 950 futures contracts for hedging purposes.

10



The conditional expectation and variance of wealth are given by

E (W ∗T |Ω0) = ξ (a+ b)P0 +X
t0

(1 + r)T − ξ (a2 + b2
)

(1 + r)T−τ (15)

var (W ∗T |Ω0) = var (XT |Ω0) + var (ZT |Ω0) (16)

+var (YT |Ω0) + 2cov (YT , XT |Ω0)

Note that
(
Qb −Qa) ∼ N

(
ξ (b+ a) , σ2

b + σ2
a

)
and the calculation of the conditional variance

requires the products of dependent Gaussian random variables for which which we need simulations

in Qa and Qb in order to solve the problem.12

The expected wealth is not only a function of the basis risk but also depends on the volatility

of the market maker’s order flow13. A basis risk equal to zero implies that the outstanding position

is perfectly hedged using cFτ futures. In this case, the only source of uncertainty stems from net

order flow uncertainty as it influences the trading account of the dealer. Hence, the quoted spread

depends on the basis risk but also on φ ≡ σ−1
buyσsell. The larger φ deviates from 1, the more

difficult it is to match order flows and the larger the uncertainty in the trading account. Because

of this reason, we take the volatility in the buy (σbuy) and sell order flow (σsell) into consideration.

The exact simulation process is outlined in the appendix (step 2). The outcome of the simulation

process is depicted in figure 3 and shows that the quoted spread is a non-linear increasing function

of basis volatility. This non-linearity suggests that the market maker is controlling his exposure to

basis risk by increasing his spread as a compensation for the increased hedge difficulty. However,

when the basis volatility becomes very large, the quoted spread becomes even larger indicating his

reluctance to trade. Note also that a φ different from 1 will result in a higher quoted spread in

order to limit the exposure of order flow on the trading account.

3 Data

In the previous section we saw that the basis risk is important in determining the quality of a

hedge and the payoff of any arbitrage strategy. An investor holding a security with a higher basis

risk should be compensated through a higher yield. Using this idea, we estimate the basis risk for

some 10-year Eurozone government bonds using transaction data from the MTS trading system

and the EUREX for the bund future during the period January 2000 to May 2001.
12The problem stems from the fact that terminal wealth is function of order flow×price and both are normally

distributed. If the random variables Qt and Pt were independent, things would be simplified. A general case about

the product of independent Gaussian variables has been given by e.g. Goodman (1960). For an exposition of the

probability density function, see Springer and Thompson (1970).
13Recall that the urgence to hedge depends on the market makers ability to match (unwanted) incoming buy or

sell orders with incoming sell or buy orders.
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3.1 The Cost of Carry Relation

In the absence of market frictions and uncertainty, the futures price should equal the price of

the underlying bond plus the cost of carry. Any breakdown of this relationship must result in

an exposure since traders hedge the position in the spot market using an offsetting position in

the futures market. A large number of studies focus on the relationship between the spot and

derivatives market. See for example, Stoll and Whaley (1990), Chan (1992), Huang and Stoll

(1994), Brooks, Garret and Hinich (1999) for stock and stock futures indices and Bhattacharya

(1987) and de Jong and Donders (1998) for the stock and stock options market. These studies find

significant lead-lag relationships although this relationship is not unidirectional as the cash index

may affect the futures market too. The rationale between these relationships is found in market

microstructure frictions that break the cost-of carry-relationship and the leverage character of

futures markets, which creates better trading opportunities for informed traders. Subrahmanyam

(1991) discusses the role of information and shows in a theoretical setup that liquidity traders

prefer to trade the basket rather than the underlying security. The reason for this is twofold.

First, the transaction cost of basket trading like futures is much lower compared to the individual

securities. Second, the security specific adverse selection component tends to diversify away in a

basket. However, this increased activity of liquidity trading also facilitates the incoming of informed

traders as they can better hide their strategic trades among the noise, see e.g. Kyle (1985).

Let us now turn our attention to the German (Bund) futures contract that is used in this

study. This contract is based on a hypothetical bond with a coupon of 6 percent and a maturity

of exactly 10 years starting on the settlement date. Quotation in this contract is in a percentage

of par value carried out in two decimals. The contract size is EUR 100.000 and every 0.01 percent

of price movements represent EUR 10. Delivery of bonds takes place on the 10-th day of March,

June, September or December or the immediate following trading day. The last trading day is

always two exchange days prior to the delivery day where trading in the running contract stops

at 12.30 CET. Trading hours are between 8.00 and 19.00. The daily settlement price is based on

the volume weighted average price of the last 5 trades. If these trades are older than 15 minutes

or if more than 5 trades occurred during the last minute, all trades during that 15-minute period

are considered. The final settlement price is determined at 12.30 p.m. CET on the last trading

day and is based on the last ten trades, provided that they are not older than 30 minutes. If more

than 10 trades occurred during the last minutes all trades are considered in this period. Although

the bund futures contract is based on a hypothetical bond, delivery is based on a tangible asset.

In order to avoid any manipulations14 in the spot market, one can deliver any German bond with
14Because of the relative size of the futures market to the spot market, the futures market is potentially exposed

to price manipulations. A strategy often depicted as an example is the short squeeze. Investors can take a long

position in the futures contract and the underlying bond. Investors who want to cover their short position will drive

up the futures price. At the same time, any investor who wants to deliver the specified contract will drive up the

bond price.
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a maturity between 8.5 and 10.5 years and a minimum issue size of EUR 2bn. Any bond that

satisfies the contract specifications may be delivered, and this will result in an conflict of interest.

A holder of a long position hopes to receive a bond with a high coupon and significant accrued

interest while a holder of the short position hopes to deliver a bond with a low coupon shortly after

the coupon payment date. In order to solve this conflict of interest, the amount exchanged for the

bond (invoice price) will be adjusted. Because the investor being short in the futures contract has

the delivery option, he will receive an invoice amount at date T equal to

ciFT + acci,T (17)

where FT is the futures settlement price, ci is the conversion factor of bond i being delivered and

ACCi,T the accrued interest of bond i at time T . The conversion factor is simply the price unit of

face value such that every bond has the same yield if purchased. The yield selected for calculation

is the same as the coupon rate in the definition of the contract. If we denote the coupon of the

hypothetical bond by γ̄, we can calculate the conversion factor for bond i with coupon γi maturing

at time M in a discrete setup as15

ci(T, ci,M) =
M−T∑

i=1

γi
(1 + γ̄)i

+
1

(1 + γ̄)M−T
(18)

=
γi
γ̄

+
γ̄ − γi

γ̄ (1 + γ̄)M−T

We see that if γi = γ̄, the conversion factor equals 1. If γi > γ̄, the conversion factor is larger

than 1 and smaller otherwise. The conversion factor shows us that, by adjusting the price, one

can provide any investor with the approximately the same yield with different coupons. However,

conversion factors are not a waterproof method when the term structure is not flat at the notional

coupon rate. One can show (appendix point 3) that the futures price follows the price of the

underlying deliverable bond, its repo rate and the time until maturity. All the parameters needed

to calculate the fair price of the futures contracts are known in advance.16 Benninga and Wiener

(1999) show in a continuous setting that the optimal CTD will have either the largest or lowest

coupon (given a fixed maturity) as long as there are no delivery options in the contract. Intuitively,

given a maturity, the duration of a bond is determined by the coupon and bonds with the highest

duration (i.e. lowest coupon) becomes relative cheap compared to other deliverable securities when

the curve steepens.
15In our case, we set γ̄ = 6% for the bund futures contract.
16Running a cash and carry strategy also involves the paying of a repo rate while at the same time earning interest

on the coupons. When the coupon rates are higher than the repo rates, we have a positive carry. As a result, future

prices with a longer delivery date have a lower price as it cost less to conduct the strategy. On the other hand, if

we have negative carry, the futures price for securities with a longer delivery date is higher.

13



Table 1: Trading characteristics of 2011 and 2012 securities.

Table shows us some trading characteristics of the bonds considered for our econometric analysis. We focus

on the 10-year benchmark bonds of Belgium (OLO), France (OAT), Germany(DBR) and Italy (BTP). E.g.

OLO5 09/11 reflect a Belgian bond with a coupon of 5% which matures in September 2011.

Bond Type OLO5 09/11 OAT5 10/11 DBR5.25 01/11 BTP5.25 08/11

Total number of trades 5542 4754 2886 62735
Percentage EuroMTS trades 32 67 72 21
Total volume 48472 32028 17520 354140
Volume EuroMTS 14585 20875 12905 80758
Average local volume 8.99 7.11 5.71 5.52
Average EuroMTS volume 8.22 6.55 6.21 6.13
EuroMTS / local volume 0.91 0.92 1.09 1.11
percentage 5mio trades 27 67 81 88
percentage 10mio trades 71 32 17 9

3.2 Bond Data

The bonds that we use in our analysis are the running benchmark 10-year bonds issued in 2001

by Italy, Belgium, France and Germany. The are two reasons to consider these bonds. First, the

number of observations of these bond series is the largest and therefore most suitable for statistical

inference. Second, the 10-year area of the European yield-curve is very active in terms of trading

activity and issuance by government agents. It is also considered to be the most important long

bond on the yield curve. The trading characteristics of these bonds are presented in table 1 which

is taken from Cheung, de Jong and Rindi (2004). As we can see, the number of observations is the

largest (smallest) for the Italian (German) securities. On the other hand, the average trade size is

smallest in the Italian securities. Table 2 uses equation (18) to calculate the conversion factors for

the different bonds considered in our analysis

3.3 Bund Futures Data

Let us turn our attention to the trading characteristics as found in our dataset. Data of the bund

futures contract comes from trading on the EUREX, which is an electronic trading platform for

derivatives.17 The sample of intra-day futures traded on the EUREX system spans the period 2

January 2000 until December 2001. Because our intra-day bond trades run from January 2000

until May 2001, we limit our analysis up to the June 2001 contract. This gives us a total of 6

contracts (4 contracts in 2000 and the March and June, 2001 contract).

Table ?? provides an overview of trading activity per contract as found in our dataset. We see

that the largest part of trading activity is concentrated in the front contract. We also present the
17An identical contract is traded on the LIFFE in London. A comparable contract is traded on the CBOT. In

contrast to its European equivalent, this security has a cash delivery rather than a physical delivery.
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Table 2: Conversion factors

Table shows us the conversion factors (assuming that these bonds could be delivered). The conversion

factors are calculated using the following formula:

CF (T, c,M) =
γi
γ̄

+
γ̄ − γi

γ̄ (1 + γ̄)M−T

where γ̄ = 0.06 is the coupon of the hypothetical bond, T is the delivery date and M the maturity data of

the bond.

OLO5 9/11 OAT5 10/11 DBR5.25 01/11 BTP5.25 08/11

March-02 0.9381 0.9377 0.9545 0.9521
June-02 0.9394 0.9390 0.9555 0.9531
September-02 0.9407 0.9403 0.9565 0.9542
December-02 0.9420 0.9416 0.9576 0.9552
March-03 0.9433 0.9429 0.9586 0.9562
June-03 0.9447 0.9442 0.9597 0.9572

most important results graphically for the June 2001 and September 2001 contract (patterns are

similar for other series). Figure 4 depicts the large trading activity in the June 2001 contract until

1th June (day 100 in the picture), which is the beginning of the expiration month and 8 days before

the final trading day of this contract. In contrast, trading is rather modest in the follow up contract

as can be seen in figure 5, but trading activity picks up considerably in the 100-th day while at

the same time, the average number of contracts per trades falls. This increased trading activity in

combination with the small number of contracts per trade suggests that bond traders are actively

hedging their portfolio as much as they can. The fact that activity is mainly concentrated in the

nearest contract suggests that this is rather a short-term hedge. Active hedging of portfolios is a

phenomenon widely seen in these markets. Naik and Yadav (2003) for example provide empirical

evidence of bond traders hedging their bond positions using duration measures on the Gilt (UK)

market. The analysis shows us that the follow up contracts starts immediately on the first day of

the maturity month of the previous contract. Using this information, we construct a single time

series of future prices. Every trading day is divided in 96 intervals of 5 minutes and runs from 8.00

and 18.00 CET. We take the volume weighted-price if a trade occurred in these intervals and use

non-available otherwise.

We follow Bollerslev, Cai and Song (2000) and model futures return as lnFt − lnFt−1 where

Ft is the volume weighted average price in a 5-minute interval. The sample mean of the 5-minute

futures series is −0.0001 and indistinguishable from zero at standard significance level giving the

sample standard deviation of 0.027%. However, the returns are clearly not normally distributed.

For example, the skewness of −0.93 and a kurtosis of 66.2 are both highly significant. At the

same time, the maximum and minimum return of 0.50% and 0.66% do not represent any sharp

discontinuities in the series. In order to evaluate some of the intra-day periodicity of returns, we
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Table 3: Some trading characteristics of the bund future

Overview of trading activity on the EUREX for the Bund future as found in our dataset. Values between

brackets reflects the observations in the running months. As an illustration, let us take a look at the June

2001 contract. The table shows us that a total of 111 trading days were observed in our dataset giving a

total of 720 thousand trades or 42.2 million contracts (this reflects an average of 58.7 contracts per trade).

More importantly, trading is concentrated is the period when this contract is front running (1 March until

7 June). During this period, some 710 thousand trades were observed reflecting 41.5 million contracts.

This equals 590 thousand contracts per day.

Contract March 2001 June 2001 September 2001

Number of contracts 33.3 42.2 (41.5) 38.2(37.7)
Number of trades 0.51 0.72 (0.71) 0.64 (0.63)
Average Trading Size 65.5 58.7 60.0
Number of Trading days 49 111 176
Contracts per Day (running months) 0.68 0.59 0.54
Contract December 2001 March 2002 June 2002

Number of contracts 48.5 (48) 41.7 (41.1) 36.8 (36.4)
Number of trades 0.83 (0.82) 0.85 (0.85) 0.65 (0.64)
Average Trading Size 58.6 48.9 56.8
Number of Trading days 188 179 173
Contracts per Day (running months) 0.70 0.60 0.55

calculate sample mean for the absolute returns. Its pattern is depicted in figure 6 and reflects

a broad U-shape which is closely linked to the cycle of market activity. Volatility is gradually

increasing until 10.00 CET (interval 24) after which volatility drops with a low around the lunch

hours. Market volatility is relative quiet but starts picking up around 14.30 CET (interval 74)

in which market makers are preparing themselves for the opening of the US markets. These

findings are consistent with Ahn, Cai and Cheung (2002) for the Bund future and Scalia (1998)

for Italian treasuries and correspond with the macroeconomicannouncements in the US, which are

regularly scheduled around 8.30 EST. A large number of studies, e.g. Fleming and Remolona

(1997, 1999b), Balduzi, Elton and Green (2001) and Bollerslev, Cai and Song (2000) have linked

the intra-day volatility of US treasuries with the release of macroeconomicnews. Andersen and

Bollerslev (1997,1998) also divide their dataset in 5 minutes to analyze the role of macroeconomic

announcements on volatility. Using high-frequency data, they find intra-day volatility being larger

than daily variation in absolute return. In addition, the effect of macroeconomic announcements

is strong but short-lived. Ahn, Cai and Cheung (2002) provide a detailed study of the impact of

various macroeconomic variables on the Bund future. They find the largest impact for the German

IFO industry survey, the industrial production and the Bundesbank policy meetings.18

18The US numbers are also important. The authors find that especially the NAPM and the unemployment figures

have a significant impact.
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4 Estimating the Basis Risk

Let us now define the econometric model. Denote the price of bond i at time t by pi,t and the

unobserved efficient futures price by F ∗t . In a multivariate setup where we have N bonds and 1

futures contract, the model is given by

pt = b̂t + cF ∗t (19)

where the parameters in boldface denote vectors and in capital boldface denote matrices. Here F ∗t
is the (unobservable) efficient price. So far no residual term is introduced because equation (19)

reflects a exact relation between the price of a security and the efficient price. We follow Hasbrouck

(1993) and use the following dynamic structure for the futures price

Ft = F ∗t + et (20)

F ∗t = F ∗t−1 + κt

The futures price equals its efficient price F ∗t plus some measurement error et while the efficient

price follows a random walk with innovation κt. The dynamics of the basis for bond i is given by

b̂t = b + bt where b is the long run average and bt follows an AR(1) process

bt = Gbt−1 + rκt + ut (21)

Let us consider the specification of the basis dynamics as given by (21). We know that the residual

risk depends not only on the basis risk, but also on the correlation between the futures contract

and basis. We therefore include rκt to model the interaction between the basis and the futures

contract. In addition, dynamics in the futures contract depends also on shocks in the cash market,

which is denoted by ut. Using these ingredients, we write the full model as

Ft = F ∗t + et

pt = b + bt + cF ∗t

F ∗t = F ∗t−1 + κt (22)

bt = Gbt−1 + rκt + ut

E(utu′t) = Ξu, var(κt) = σ2
κ

where G is a N ×N diagonal matrix with Gii=γi.19 If the eigenvalues of G lies outside the unit

circle, these shocks accumulate over time. Clearly, if γi is small, the impacts of previous shocks

die out relative fast. If κt is uncorrelated with ut, the unconditional covariance matrix of the basis

(Ξbasis) is given by

vec [Ξbasis] = (IN2 − (G′ ⊗G))−1 (
vec [r′ ⊗ r]σ2

κ + vec [Ξu]
)

(23)

19Note that γi in this section is different than in the previous section (where γi reflected the coupon of bond i).
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provided that γi = 1 is not an eigenvalue of G. Hence, the (i, j)th element of Ξbasis can be written

as

Ξ(i,j)
basis =





rirjσ
2
κ + σ2

ui

1− γiγj
if i = j

rirjσ
2
κ

1− γiγj
if i 6= j

(24)

Now we are ready to construct our hypotheses and relate these hypotheses to testable restriction

in our model:

• If bond i is traded at a premium (in terms of yields) compared to bond j does it also have a

higher basis risk? Specifically, we have to check whether

H0 : Ξ(i,i)
basis < Ξ(j,j)

basis (25)

The structure of the model also enables us to detect the impact of any unexpected news on the

basis volatility. Chan (1992) argues that movements in the futures contract are a source of market

wide information while movements in the spot instruments are a source of individual news. We

therefore make a distinction between the following cases:

• Type 1 news affects the cost-of carry relation through the bund future as it enters the system

through the parameter κt.20 If we denote Ξr = r′rσ2
κ, we can calculate the fraction of this

impact on total basis volatility which is given by the square root of the diagonal elements of

v1:

v1 = ΞrΞ−1
basis (26)

• Type 2 news affects the cost-of carry relation through the spot market as it enters the system

through the vector ut. This is bond specific news. One can think e.g. of shocks due to change

in supply or buy-back operations announced by the treasury agent. Because we are working

with transaction data, this news must find its way through order flows in the secondary

market. If this news is positive (e.g. the treasury is planning to issue less bonds due to a

lower state deficit), then these bonds will outperform the rest of the market. The fraction of

this news on the total basis volatility is shown by the square root of the diagonal elements

of v2:

v2 = ΞuΞ−1
basis (27)

Note that the model as depicted by equation (22) is a reminiscent of Hasbroucks unobserved

component model in a multivariate setting. If G = 0 and c = 1, we get the model proposed by de
20One can think for example of technical problems on the EUREX system
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Jong and Schotman (2003) for price discovery of securities in a multiple market setting. We use

the Kalman filter to estimate the model. One question that may arise is the use of a state space

approach for estimating the model. The Bund futures market is one of the most efficient markets

in the world and the gain by working with the efficient futures price F ∗t rather than observable

Ft is probably negligible. Therefore we can also run a simple regression of pt on Ft. However,

because we are working with transaction data, there may exist noise due to the bid-ask spread

set by dealers. Moreover, the exact relationship between the fair futures price and the cheapest

to deliver bond as given by equation (40) exist through a cash and carry strategy. But from the

economic point of view this makes sense only if the underlying bonds are deliverable. Finally, there

is also a problem of non-synchronous trading as the activity in the futures market is by far larger

than the cash market. This creates problems in terms of spurious correlation which is handled

easily by the Kalman filter.

4.1 The Kalman Filter

We briefly discuss the specific estimation procedure for our model. The reader is referred to Harvey

(1993, chapter 4) , Hamilton (1994, chapter 13) or Durbin and Koopman (2001) for a detailed

description of the Kalman filter together with its applications in econometrics. In our case, the

Kalman filter is easy to setup as the structure of our model is a reminiscent of a local level model.

Let ft be the optimal estimator of F ∗t bases on all information up to pt with an associated mean

square error φt ≡ E [F ∗t − E (ft)]
2. Consider the Kalman filter procedure for time t to time (t+ 1)

where ft and φt are given. Based on the equations of (22) we have

Et (ft+1) = ft

Et(pt+1) = b + Et(bt+1) + cEt (ft+1)

Et
(
φt+1

)
= φt + σ2

k (28)

with prediction error

Mt+1 = pt+1 − Et(pt+1)

= rkt+1 + ut+1 + c [Ft+1 − Et (ft+1)] (29)

Using this we can find the conditional MSE of Et(xt+1) :

Ft+1 ≡ Et
(
Mt+1M′

t+1

)

= rr′σ2
κ + Ξu + cEt [Ft+1 − Et (ft+1)] c′ (30)

Because we assume that all the parameters are normally distributed, both (28) and (30) are

normally distributed and we update the state using

ft+1 = Et (ft+1) + Et
(
φt+1

)
ι′NF−1

t+1 (pt+1 − b−Gbt−1 − cEt (ft+1)) (31)

φt+1 = Et
(
φt+1

)− Et
(
φt+1

)
ι′NF−1

t+1Et
(
φt+1

)
ιN (32)
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Equation (28) to (32) constitutes the Kalman filter which we apply in combination with a maximum

likelihood procedure. An important issue here are the initial values f0 and φ0 in order to start

the procedure for time t = 0 to time t = 1. Harvey (1993) argues that if the state process was

stationary, one can use the unconditional mean to start the procedure. In our case however, F ∗t
follows a random walk while bt is a stationary process when the eigenvalues of G are inside the

unit circle. We expect the efficient price to be closely related to the observable futures price, i.e.

F ∗0 = F0 and var(F ∗0 ) = 1000 to address the uncertainty. In addition, the deviation from the basis

is initialized at b0 = 0 with an uncertainty of var(bt) = 100.

4.2 Missing Observations

High frequency time series are typically not observed in regular intervals. This is clearly the case for

our dataset where the futures are traded more often than any of the bonds. In our case, 3 different

situations may arise for interval t. The first situation arises when none elements of xt are missing

and the estimation proceeds in its usual way. The second situation arises when all elements of xt
are missing. In that particular case, we set xt+1 − β − γEt (ft+1) = 0 and Et

(
φt+1

)
ι′NF−1

t+1 = 0

and the updating process becomes

ft+1 = Et (ft+1) (33)

φt+1 = Et
(
φt+1

)
(34)

The third and most occurring situation arises when some, but not all of the elements of the

observation vector xt are missing. In this case, we can construct a matrix W whose rows are a

subset of the rows of the unit matrix IN and create a new observation vector x∗t = Wxt. The

updating procedure proceed exactly the same as in the first situation where at the appropriate

time points xt is replaced by x∗t changing the dimension of the observation vector.

The state space procedure is the same as the approach taken by Lo and MacKinlay (1990).21

They argue that many securities respond to the same news due to common factor components.

The fact that some securities are traded less frequently means that these securities responds with

a lag, inducing spurious correlation between the closing price of securities, even if the underlying

(true) returns are uncorrelated. Lo and MacKinlay (1990) proposes a model for non-synchronous

trading by assuming that the true return generating process R̃t is a multifactor model with both

common and idiosyncratic factors. The latter ones are assumed to be uncorrelated amongst the N

securities.22 For every security i (i = 1, ..., N) they construct a random (1×T ) vector v such that

vi (t) = 1 when security i has been traded in interval t and 0 otherwise, they relate the observed

21There is however a differnce in approach. Lo and Mackinlay explicitly model return rt and this requires

observations t and t− 1. As we model prices, only observation t is required.
22De Jong and Nijman (1995) generalizes the approach of Lo and Mackinlay by assuming that the true return

generating process may be correlated.
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process with the true process by

Robs
T = VR̃T (35)

where R̃T =
[
R̃it...R̃2t

]′
and V a diagonal matrix with vi on its diagonal. In other words, the

observed return is a random sum with a random number of terms. As we can see, the procedure

of Lo-MacKinlay is also captured by our state space model where the ith rows of W is a subset of

vi.

4.3 Estimation Results

Before we start discussing the estimation results, let us consider the quality of the residuals. In

order to give an economic interpretation to the model, we must have the residuals being stationary

which means that equation (22) incorporates a cointegration relation

ut = pt − cF ∗t (36)

In addition, the underlying assumptions for the Kalman filter are white noise disturbances. On

these assumptions, the forecast errors are Mt ∼ N(0,Ft) and we have to analyze the forecast

errors M∗
t = CtMt where C is the Choleski factorization of F−1

t . Basic diagnostics are applied to

M∗
t and a plot of these residuals are given in figure (8). The plots show that that all the series are

stationary but they exhibit a strong form of heteroskedasticity. It therefore fails the assumption

of white noise underlying the data generating process. The Kalman filter can still be used to

calculate the linear projections of xt+1 on past observations while a likelihood function based on a

multivariate Gaussian distribution can be optimized with respect to the unknown parameters. The

standard errors however may not be valid and we apply the quasi-maximum likelihood procedure

as suggested by White (1982) rather than the usual second order derivatives of the likelihood

function.

Table (4) provides some details of the multivariate estimation results for the 2011 bonds. As we

can see, the estimated σe equals 0.00062 and is highly significant. This shows that the bund futures

market is indeed a very efficient market where the observable price is closely related to an efficient

price. The average basis bi are all positive and smallest for Germany followed Italy, France and

Belgium. This is not a surprise as German and Italian securities pay an annual coupon of 5.25%

while their French and Belgian equivalent pay 25bp less. The key parameter in our analysis is the

variance of the basis which equals
(
ρ2
iσ

2
κ + σ2

ui

) (
1− γ2

i

)−1. As we see, ρItaly is not significant. In

addition, the values for γ are very close but significantly different from one at the 10% rejection

level which means that bi,t shows signs of a close random walk and indicates a weak reversion back

to its long run average. Because γi is close to one, we calculate the basis risk not based on the

formula but rather take the sample standard deviation of bt. Figure 7 depicts the dynamics of

the state variables from the Kalman filter. In here, the FGBL state is the efficient futures price
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Table 4: Estimation results for 2011 bonds

The estimated parameters of our state space model for the 2011 bonds with the corresponding standard

errors in italics. DBR = German, OAT = France, OLO = Belgium and BTP = Italy. Note that σe is

multiplied by 1000.

parameters DBR 2011 OAT 2011 OLO 2011 BTP 2011

bi 1.730 6.312 8.584 3.568
0.969 0.909 4.990 5.340

ci 0.951 0.870 0.836 0.902
0.009 0.008 0.046 0.020

ρi 0.009 0.091 0.091 0.041
0.003 0.026 0.048 0.051

γI 0.971 0.994 0.996 0.999
0.017 0.001 0.002 0.000

σe 6.2 (× 1000)
1.13 (× 1000)

σk 0.024
0.000

σui 0.032 0.012 0.027 0.010
0.011 0.001 0.008 0.001

σbasis 0.16 0.21 0.60 0.64

and closely follows the observable futures price. Using the sample standard deviation, we find

a basis volatility running from 0.16 (Germany), 0.19 (France), 0.60 (Belgium) and 0.64 (Italy).

Hence, the French and German benchmark bonds have a basis volatility that is more than three

times lower than the basis volatility of Belgium and Italy making the uncertainty in the hedge

payoff using the bund future much larger in the Belgian and Italian sovereigns. This confirms the

hypothesis that bonds with a lower basis risk are traded at a premium. Let us now take a look

at the other parameters. We argued that the regression coefficient ci could be interpreted as a

conversion factor. If we assume that these bonds are deliverable, we can calculate these conversion

factors using equation (18). Recall that the true conversion factors are depicted in table (2) and

this gives us the opportunity to test whether ci equals its conversion factor. In addition, using

the values for σ2
ui, r and σ2

κ we are able to calculate the impact of different shocks on the basis

volatility. We find that the fraction of shocks in the order flow contributes to some 20% of the

basis volatility (Germany), 6.3% (France), 4.3% (Belgium) and 1.5% (Italy). We think that this

is an interesting result for the market maker as he has partial control over his exposure to basis

volatility by changing the bid-ask spread. In other words, the controllable part of the basis risk is

the largest in Germany followed by France. However, some 80% to 98% of the basis volatility is

still out of the market makers control.
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5 Conclusions

In this paper we try to explain the yield differentials in European sovereign bonds from the per-

spective of the actively traded bund futures contract. Many strategies involve a position in the

spot- and futures market and the payoff of these strategies depends on a non-diversifiable basis

risk. This paper contributes to the existing literature in two ways. First, using a risk-averse

framework and simulations, we find that the quoted spread is a convex function of basis risk. This

convexity implies that a dealer will set a higher spread when basis risk increases. If basis risk

becomes very large however, the increase in the quoted spread is even larger indicating the market

makers reluctance to trade. This convexity in spreads also reflects the importance of the futures

market for pricing bonds and explains why trading comes to an halt when the futures market

faces trading problems. Second, we show that Eurozone government bonds with higher yields have

higher basis volatility. Using a filtering approach in combination with Quasi-Maximum Likelihood

we find that the basis risk in German and French securities is much lower than those found for

the Belgian and Italian securities. This provides another explanation for the premium observed in

these securities even though Italian securities are heavier traded and more liquid in the secondary

market. In addition, spot dealers can control a part of their basis risk by setting a price in line with

the futures contract. The easier it is to control this basis risk, the less impact high basis volatility

has on the market makers position. We find that some 20% of basis risk can be controlled for in

German securities while less than 2% of the basis risk can be controlled for in Italian securities

when using the bund future.

The fact that price differences are not only related to liquidity or credit risk but also to hedging

quality has important implications for policy making. A strong fiscal convergence and operations

leading to an increase in liquidity are important for convergence of bond yields but measures

that can limit the basis risk should be taken into consideration as well. For the actively traded

bund futures contract, this can be achieved by cash settlement or allowing non-German bonds for

delivery. Although these measures do not solve additional problems, it would help in lowering the

‘natural’ advantage incorporated in German bonds due to their physical delivery. We think that

these measures can greatly improve the efficiency of the Eurozone sovereign bond market.
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Appendix

1. The decision to buy or sell h number of futures contracts is made at time τ when the market maker

observes the information set Ωτ = {Pτ , Fτ , Qa, Qb}. The market makers objective function is given

by

max
h

EU (WT |Ωτ ) = E (WT |Ωτ )− 1
2
γvar (WT |Ωτ ) (37)

and, in order to find the optimal hedge ratio, we have to calculate its conditional expectation and

variance

E (WT |Ωτ ) = E (XT |Ωτ ) + E (ZT |Ωτ ) + E (YT |Ωτ )

E (XT |Ωτ ) =
(
Qb −Qa)Eτ (PT )

E (YT |Ωτ ) =
[
Yt0 +Qa (p+ a)−QB (p− b)] (1 + r)T−τ

var (WT |Ωτ ) = var (XT |Ωτ ) + var (ZT |Ωτ ) + var (YT |Ωτ ) + 2cov (XT , ZT |Ωτ )

var (XT |Ωτ ) =
(
Qb −Qa)2 var (PT |Ωτ )

var (ZT |Ωτ ) = h2
(
Qb −Qa)2 var (FT |Ωτ )

2cov (XT , ZT ) = 2h
(
Qb −Qa)2 [cov (BT , FT |Ωτ ) + cvar (FT |Ωτ )]

as E (ZT |Ωτ ) = var (YT |Ωτ ) = cov (XT , YT ) = 2cov (ZT , YT ) = 0. Substituting these results

into equation (9) and optimize with respect to h yields

h∗ = −
[
cov (BT , FT |Ωτ )
var (FT |Ωτ )

+ c

]

where h∗ is the hedge ratio and h∗
(
Qb −Qa) the fraction being hedged by the market maker.

2. The exact simulation process goes as follows:

(a) We start with the following parameter values: F0 = 100, c = 0.95, β = 0.99, ξa = ξb =

50, Xt0 = 10, r = 0 and τ = 500. We also set σf = 1 and let σb vary from 1 to 20σf (in

steps of one), σbuy = 1 and σsell varies from 1 to 1.10σbuy (in steps of 0.01).

(b) Given these standard deviations, we simulate εt,f , εt,b, εsell and εbuy.

(c) We calculate the starting values B0 = (1− c) 100 = 5 and P0 = B0 + cF0 = 100. Using

these starting values and the residuals simulated in step 2, we calculate Ft, Bt and Pt for

t = 1, . . . , 100.

(d) The quoted price is concentrated around the expected bond price at time T = 1000 (we

set Eτ (PT ) = Pτ ). The market maker chooses a bid-price E0PT − 0.5S and an ask-price

E0PT + 0.5S. Given these bid and ask prices, we can calculate the incoming and outgoing
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order flows at time t = 1, . . . τ − 1 and hence the cash position Yτ−1. Because r = 0, we

have Yτ−1 = YT . Based on the simulated prices from t = τ , . . . 1000, we calculate the value

of the inventory and margin account (i.e. ZT and XT ). From these 1000 observations, we

can also calculate the expected wealth and the associated standard deviations. The utility

function is maximized, by choosing the optimal spread S∗, subject to the constraints that the

expected wealth and the spread are nonnegative. We also calculate the optimal spread S∗

under σsell = 1.01, . . . , 1.10 (in steps of 0.01).

(e) Step (b) to (d) is repeated for σb = 2, 3, . . . , 20 (in steps of 1).

We replicate 200 times step (b) to (e) using different simulation seeds and the resulting spread is

averaged out, i.e.S̄ = 1
200

∑200
i=1 (Si|σb, σsell) is depicted in figure 3.

3 To see the relation between the spot and futures market, consider a cash-and-carry strategy. At

time t, buy EUR 100.000 face value of delivery bond i at price Pi,t while simultaneously selling a

futures contract with a price Ft. Finance this transaction using a repo agreement with interest rate

R and hold this bond until delivery date T . The following cash flow arises for the short at delivery

date:

• Receive the invoice price (equation 17);

• Buy this bond, repo out and receive the Pi,t + acci,t. At time T , the short has to reverse the repo

and pays back 23:

(Pi,t + acci,0)
(

1 +R
T − t
365

)
(38)

• Under a repo, the coupon and its accrued interest belongs to the original holder rather than the

repo trader. This means that at time T , the original holder receives

N∑
i=1

γi

(
1 +R

T − t∗i
365

)
(39)

where t∗i is the date in which coupon couponi is paid back to the original holder of the bond.

The net profit of this cash and carry strategy must be zero as it is (virtually) risk free for default free

bonds. Hence, the relationship between the spot and the futures price is given by equation (40):

ciFt = (Pi,t + acci,0)
(

1 +R
T − t
365

)
−

N∑
i=1

γi

(
1 +R

T − t∗i
365

)
− acci,T (40)

This tells us that the futures price follows the price of the underlying deliverable bond, its repo rate and

time until maturity. All the parameters needed to calculate the fair price of the futures contracts are

23In this example we assume an actual/365 basis.
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known in advance24. The analysis shows that we can calculate the fair price of a futures contract given

the CTD bond. It does not say anything about the stochastics of the fair future price because it does not

provide a mechanism to analyze the change in the CTD. At any time, we can calculate which bond is the

CTD as anyone who conducts this cash and carry strategy will choose a bond such that the net profit

when delivering the bond against its short futures position is maximal.

max ciFt + acci,T +
N∑
i=1

γi

(
1 +R

T − t∗i
365

)
− (Pi,t + acci,0)

(
1 +R

T − t
365

)
(41)

In order to find the cheapest to deliver bond, one can calculate the net profit as given by (41) for all the

deliverable bonds. The bond that gives the highest net profit is the cheapest-to-deliver. Using arbitrage

arguments, this net profit will be equal or below zero and the bond with the lowest fair futures, price is

the CTD.

24Running a cash and carry strategy also involves the paying of a repo rate while at the same time

earning interest on the coupons. When the coupon rates are higher than the repo rates, we have a positive

carry. As a result, future prices with a longer delivery date have a lower price as it cost less to conduct

the strategy. On the other hand, if we have negative carry, the futures price for securities with a longer

delivery date is higher.
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6 Graphics

Figure 1: Yield differences of 10-year government bonds issued by various Eurozone. The Y-axis

indicates the differences in basis points. The X-axis reflects data running from 3 November 2003

until 3 November 2004 giving a total of 263 daily observations. As we can see, the 10-year Dutch

State loans are trading (on average) below its French equivalent. The Italian 10-year bond is

trading flat against Greece but at a yield pick-up against Portugal.
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Figure 2: Snapshot of prices from running benchmark bonds as observed on Tradeweb in November

2003. The differences in yields can also be observed in here.

Figure 3: Simulation of 200 times 1000 buy and sell orders. The details of this procedure can be

found in the appendix (point 2). The volatility ratio is given by φ = σsell
σbuy

. We let basis risk run

from σF to 20× σF .
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Figure 4: Daily turnover on the Eurex-system in terms of contracts per day, the number of trades,

average trading size and volume weighted price for the June 2001 contract as observed in our

dataset. The number of contracts and the number of trades per day picks up considerably around

day 40 (March 2001) when the June 2001 became the front contract. At the same time, the number

of contracts traded per day drops.

Figure 5: Daily turnover on the Eurex-system in terms of contracts per day, the number of trades,

average trading size and volume weighted price for the September 2001 contract as observed in our

dataset. The number of contracts and the number of trades per day picks up considerably around

day 110 (June 2001) when the September 2001 became the front contract. At the same time, the

number of contracts traded per day drops.
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Figure 6: Average absolute sample mean of the Bund Future. Figure shows a broad U-shape and

is closely linked to the cycle of market activity. Volatility is gradually increasing until 10.00 CET

(interval 24) after which volatility drops with a low around the lunch hours. Market volatility is

relative quiet but starts picking up around 14.30 CET (interval 74) in which market makers are

preparing themselves for the opening of the US markets.

Figure 7: Plots of the unoberserveable state variables for the 2011 bonds calculated using the

Kalman filter. Here, FGBL refers to the efficient futures price.
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Figure 8: Plot of the residuals from the Kalman filter process based on a Choleski decomposition

of F−1
t . The figures show that the residuals are stationary.
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